戴震评传

首页
字体:
上 章 目 录 下 页
五、戴震数学中的科学哲学问题
    如前所说,门类科学中的哲学问题,是一种客观存在,问题是是否对它着手研究。综观《勾股割图记》、《策算》、有关传统数学书的《四库全书总目》提要等,戴震确实对数学研究有潜在的科学思想作指导。

    数学研究运用于天文,由天文研究引发对数学的浓厚兴趣,这在《勾股割圆记》中尤为明确。《割圆记》列入《原象》,作为《七经小记》之一,足见作者的应用思想。本来,从科学史看,天文和数学是一对孪生兄弟,互为前提,互相促进的,《割圆记》上中下三卷,分别以平面直角三角形勾股弦、球面直角三角形勾股弦和球面斜三角形为研究对象,三部分内容均可以平面三角和球面三角证明之。后两部分和古代天文中的天体视运动轨道、轨道交角、天球经纬度拟测等,结合得尤紧,有关天体视运动问题贯穿于球面勾股弦结终。《割圆记》中开头便说:如赤道为一规,黄道为一规,赤道即《周髀》之中衡,黄道自南而北,交于春分,自北而南,交于秋分,二分(按:春分、秋分)相距半天周。??如分、至(按:夏至、冬至)相距四分天周之一。更为一规,过二至、二极(按:北天极、南天极)为玉衡之中维(吴曰:今名二极、二至交圈)。赤道距北极,黄道距北极漩巩(吴曰:今名黄道极),皆四分天周之一,北极璇玑距正北极与黄道距赤道相等(按:指黄赤交角,皆为23°26’)。以天球视圆面说勾股,宗旨十分明确,所说内容,经验证完全正确,在明确天球视圆面的构成以后,戴震以球面直角三角形的勾、股定天球的经、纬度。他说:“经之内规之谓之经弧(按:球面直角三角形之勾,亦即赤纬),纬之内截其规谓之纬弧(按:球面直角之股,亦即黄经之余弧)。”他所举出的古代测定经纬度的方直仪,实际上就是球面直角三角形测量仪。

    为使读者弄懂用球面直角勾股计算经纬度,几乎在每一勾股术之前,戴震都要列出球面勾股弦与相应勾股术中术语的对应关系,体现出数学术语系统,当然也是数学关系系统的个别一一对应和成系统的层次对应。例如经度系统和纬度系统的勾股对应:①勾 股 弦经度(矩分) 圆半径 经度(径引数)

    经度(内矩分) 经度(次内矩分)径隅圆半径 经度(次矩分)经度(次引数)

    经弧(矩分) 纬度(次内矩分)虚经弧(内矩分) 虚 纬弧(次内矩分)

    勾 股 弦纬度(矩分) 圆半径 纬度(径引数)

    纬度(内矩分) 纬度(次内矩分) 径隅圆半径 纬度(次矩分)纬度(次引数)

    勾 股 弦纬弧(矩分) 经度(次内矩分) 虚纬弧(内矩分) 虚 经弧① 戴震的经度在天文学上实际上是指黄道和赤道的交角,后改称经限,赤经的余弧,叫纬度,后改称纬限。以上第一表和勾股弦的对应中,同是经度、经弧,但由于割圆法的不同(正切、正弦)引起不同概念的同一对应,第二表中纬度和纬弧亦然,两表比较,是同一大勾股系统的子系统的分别对应。两个子系统都可用球面直角勾股法解之,因而两个子系统也是有内在的对应关系的,这就形成近层次的勾股对应(同一子系统内)和远层次的勾股对应(不同子系统内)。凡此种种,都存在着推类逻辑的使用,归纳是其寻找对应的主要方法,归纳成系统表以后,便于实施球面三角求解中的演绎过程。《割圆记》全书诸多对应表,实际上代表勾股使用的类别,故它冠于每一勾股术使用的前面,作为基本概念的说明。就全书而论,它还是勾股原理的纲目,故它置于一般原理的说明之后,以准备将一般原理经过这类纲目而进入使用,因而这类有明确层次对应的纲目是原理和使用术的中介系统。

    在球面斜勾股中,构制的体例与平勾股和球面直角勾股大致相仿,一般由原理、层次对应的概念说明、勾股使用术构成。球面斜勾股与天体视运动的说明仍是结合得很紧的,正如戴震本人所说:“总三篇几为图五十有五,为术四十有九,记二千四百一十七字,因《周髀》首章之言衍而极之,以备步算之大全,补六艺之逸简。”①但是,和球面直角求天球经纬相比,球面斜勾股更重视数学本身的研究,《记》下第四十五术为边角互求,以对角求斜边,四十六术亦边角互求,以对边求对角,四十七术为重弧法(与求经、纬度结合甚紧)四十八术两边夹一角求对边,及两角夹一边求对角,四十九术为三边求三角,及三角求三边。共五术。我国的数学,十分重视实际应用,在几何学方面,偏重面积、体积和线段长短的计算,不象古希腊人的几何学重视各个定理的逻辑推论。戴震割圆术51 术(《记》上16,中30,下5,戴震说“为术四十有九”,有误),实际上是定义定理构成,外加原理部分的说明,穷尽了三角学的全部定义和定理,仅表达方式上是勾股中法,这在传统数学史上是了不起的创举,它使中法数学不重视原理推证进到了以中法论证中法表达的原理的新阶段,这一进步与戴震熟谙西学有极大关系,要不是西学以其简明,以符号表达的长处取代我国传统数学,中法数学原理的推证还会继续发展下去。事实上,戴震数学的后继者如凌廷堪、焦循、李锐、汪莱都是由中学重视“算法”进而推进到重视“算理”的,但这些推进更多地采取了西学的表达形式。


本章未完,请翻开下方下一章继续阅读
上 章 目 录 下 页